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ABSTRACT

Most vulnerable area (AV) analyses consider component proba-
bility of ki1l given a hit, P(K/H), to be a point estimate with no
variance. This report presents statistical methods for calculating
assurance limits for Av assuming P(K/H)'s are not known with certainty.

Normal approximation and Monte Carlo techniques are presented.

The accuracy of these techniques is determined analytically for a
target with a small number of critical components and extended to
a larger number of components by heuristic arguments.

The central 1imit theorem indicates that AV will be approximately

normally distributed.

Formulas for necessary calculations are shown.
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ASSURANCE LIMITS
FOR VULNERABLE AREA

I. INTRODUCTION

In the draft AFFDL Technical Report, "An Objective Confidence
Level Methodology for Probability Estimate Values in Survability/
Vulnerability Assessments" (reference (1)), Captain Eugene Steadman
cites the need for establishing the cumulative distribution function

for vulnerable area (Av). The standard definition of A, is
n

Ay = jo1 AjP(KH),
where n is the number of components, A1 is the presented area of the
§t component, and P(K/H)i is the probability of kill given a hit of
the 1th component by the particular threat, subject to the shotline
survivor rule when applicable. In this study, P(K/H)i is a random
variable which has some probability density function.

Statistical methods; are explored which could be used to calculate
assurance limits for vulnerable area, assuming P(K/H) is not known
with certainty. P(K/H) values currently used in vulnerable area
analyses are point estimates assumed to have no variance. Through the
use of Monte Carlo simulations and statistical analysis techniques,
suitable methods for using distributed P(K/H) values in vulnerability
analyses are investigated considering feasibility, accuracy and cost
effectiveness. The effects that different types of P(K/H) distributions
have on the resulting vulnerable area distribution are examined.

A Monte Carlo technique was developed to simulate the cumulative

distribution function of Av’ as suggested in reference (1). This

simulation is based on the assumption that all P(K/H)i's are independent;




i.e., all covariances equal zero. This assumption is made not only in

the Monte Carlo simulation but also in the analytic techniques. If

the covariances are not zero, the probability density function P(K/H)2
must be conditioned (changed) for each selected value of P(K/H)1, the
probability density function of P(K/H)3 must then be conditioned for

each P(K/H)1 and P(K/H)Z, and so forth until P(K/H)n is a function of

the selected values of P(K/H)], P(K/H)z, ces P(K/H)n_]. Methodology for
dependent P(K/H)'s exists and is workable for both the normal approximation
and Monte Carlo techniques.

The possibility that Av is distributed normally is explored, since
the cumulative normal is tabled to various degrees of accuracy in many
reference books. If A, is normally distributed (or approximately so),
these results could be used for analyses in lieu of conducting a Monte
Carlo simulation for each individual analysis performed.

The central 1imit theorem gives an indication that it is very likely
that Av will be approximately normally distributed.

The following sections of this report will deal with a statistical
analysis and discussion which examines various possible P(K/H) distri-
butions, a discussion of the Monte Carlo simulation used to test these
distributions, and the recommendations and conclusions arrived at as a

result of this study.

II. STATISTICAL ANALYSIS AND DISCUSSION

In this section the appropriateness of using a normal approximation
for the distribution of Av will be pursued. The distribution of Av is
formed from the sum of random variables, each associated with its own

distribution. Determination of the error made by approximating the




distribution of the sum of n random variables by a normal distribution
requires determining the actual distribution of the sum. For small n,
this can be done analytically; for large n, one must resort to one of
several approximate techniques, such as numerical evaluation of con-
volution integrals or Monte Carlo simulations. In this study distribu-
tions were combined analytically for small n and extended to large n by
heuristic arguments. Monte Carlo simulations were run for small n to
test the model and to measure the accuracy of the simulation for cases
where it was possible to analytically calculate the distribution of the
sum. The case for large n will be investigated using actual aircraft
data and be presented in a later report.

If Av is normally distributed, the cumulative normal that is tabled
to various degrees of accuracy in many reference books could be used for
all analyses in lieu of conducting a Monte Carlo simulation for each

analysis performed.

A. Likely P(K/H) Distributions

Some P(K/H) values used in vulnerability analysis are arrived at by
a rather complicated, though not codified, series of steps involving
engineering experience and judgment. In these cases, it is not obvious
exactly what distribution would be associated with the P(K/H) value;
however, a reasonable approach to this situation would be the assignment
of upper and lower bounds (with probability zero) and a most likely
(modal) value. This forms a triangular distribution. Other distributions
considered are uniform and normal.

Use of a uniform distribution is present in the computation of the

probability of rendering a rod non-functional given that the rod is hit




]

(references 4 and 5). An implicit assumption in these references is that .
all shotlines that hit the rod are equally likely.

B. Relevance of Cumulative Distributions

The long range objective of this effort is to provide a means of
determining the most narrow limits (error limits) around the calculated

Av that will provide 95 percent assurance that the actual Av is within

these 1imits. Translating this objective into statistical terms implies
calculating Av many times (for the same target) considering the distri-

butions associated with the P(K/H) values. (NOTE: This repetitive calcu-

lation will not be required in practice; it is merely an artifice used in
explaining the following work.) These vulnerable area estimates are then

ranked and the limits, those values between which 95 percent of the

estimates appear, can be found, and thus the error limits determined.

If the Av estimates are plotted, they form some probability density '

function for Av, illustrated in Figure 1.

f(A,)

A

v
FIGURE 1 .




The area under the entire probability density function curve is one.

That is,
f 1’(AV)dAv = ]

The area under this curve between two limits, such as B and C, represent

the fraction of the AV estimates between the limits. That is,

Fraction of
A estimates = f(Av)d(AV)
b&tween B and C 2

Since this is of major interest, the analysis will be performed using

the cumulative distribution functions, F(AV).

Av
Fa) = [ fAaA),
0
where A& is a dummy variable used for integration purposes. Thus the

fraction of Av estimates’ less than B is F(B) and
B
Fe) = [ f(adA,)
0
Similarly, the fraction of estimates below C is F(C) and
C
Fo) = [ fia)a0a,)
0

Therefore, the fraction of Av estimates between B and C is F(C) - F(B).

This is illustrated in Figure 2.
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F(A,)
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FIGURE 2

C. Argument for Normal Approximation

1. Central Limit Theorem

The Central Limit Theorem (reference 2), loosely stated, says
that the distribution of a random variable formed as the sum of n
identically distributed random variables approaches a normal distribution.
The importance of the Central Limit Theorem to the vulnerable area

problem is clearer when the definition of vulnerable area is repeated.

>
]}
3

A, P(K/H)i

j=1 !

A]P(K/H)] + A2P(K/H)2 ¥ eos ® AnP(K/H)n

The AiP(K/H)i's are the random variables considered in the Central Limit
Theorem, each variable having some associated distribution; although in
most analyses, the distribution has been neglected, and, in fact, may

not be known.




‘ The accuracy of the Central Limit Theorem will be investigated
in the following paragraphs by considering the departure from
normality of distributions formed using sums of random variables
with identical symmetrical distributicns. Although these initial
comparisons are not realistic for an aircraft vulnerability analysis,
they serve as the starting point for the investigation. Extensions
of these concepts to examples pertinent to vulnerability analysis

are discussed in later paragraphs.

2. Coding of the Random Variable, AiP(K/H)i

For ease of calculation, certain transformations will be
performed. The distribution to be considered for comparison of
analytically derived results with those obtained using the Central
. Limit Theorem is shown below in Figure 3. The choice was dictated
by convenience in performing the analytic calculations as well as
the fact that this is a logical approximation to use when only very

limited data is available.

[ i

o -

AL U,

i AP(K/H), AY; L; P(K/H), Uy
FIGURE 3 FIGURE 4

In Figure 3, Ai is a constant and P(K/H)i is a random variable with
a lower limit of Li and an upper limit of Ui'

. Dividing by the constant Ai yields the distribution shown in Figure 4.




Further coding to the random variable P'(K/H)i with values over the

the interval 0 to 1 is shown by the following formula and Figure 5.

o P(K/H); - Ly
P'(K/H), =
i (Ui - L)
or P(K/H); = (U, - L) P'(K/H), + L, (1)
f
0 ]
P*(K/H);
FIGURE 5

Applying Equation (1) to the definition of vulnerable area, AV
can be written as a function of the random variable P'(K/H)i and

)2

associated constants, Ai and (Ui - L,

AV = A] [(U] = L]) P'(K/H)] + L]] + Az[(Uz a L2) P'(K/H)Z + Lz] + ..
AL, - L) PUKH) .+ L] (2)

Tentatively assume all Ai(Ui - Li)'s are equal. This assumption

will be re-examined later. Now A_ becomes

n
] P'(K/H)i + 151 AiLi (3)

n~MS <

1‘




Then, set C] = A1(U] - L]) = A2(U2 =l = = An(Un - Ln) and

2)
C2 ZAiLi in Equation (3). It follows that

]

A, = CzP' (K/H); + C, (4)

Using Equation (4), it can be shown statistically that >:P'(K/H),i and A,
will have the same distribution shape (form). Multiplication by a
constant changes the spread of values and addition of a constant changes
the location of the values but neither changes the shape nor the form of
the distribution.

3. Mathematically Derived Cumulative f6r Non-Normal

The exact analytic cumulative distribution functions for three non-
normal variables are presented in this section. In the next section, an
evaluation of using the normal to approximate these exact analytic functions

will be made. The three non-normals selected are: (1) a one-variable,

symmetric triangular distribution; (2) the sum of two variables, each

from identical symmetric triangular distributions; and (3) the sum

of twelve variables, each from identical uniform distributions. The

variable S (for sum) and the variable Av (Vulnerable Area) are identical.
The analyses for all three non-normal distributions will be performed

using the coded variables, P'(K/H)i, which are distributed over the

interval O to 1.

a. One Variable - S],A

This random variable (S1 A) represents the vulnerable area

for the trivial case of an aircraft with only one critical component.




S is a single sample from a symmetric triangular distribution and is

1,4
defined over the interval (0 to 1). Coding to realistic limits involves
the area of the component, and optimistic ahd pessimistic limits for
P(K/H) which were discussed earlier.

The probability density function, f(AV), for S],A is shown in

Figure 6 below.

A
v

FIGURE 6

The cumulative distribution [area under f(Av)] is defined in the

following manner:

2
2(A.)
- Vv
F] «(AV\ -

B 2R ) + 4(A,) - 1 , 0.5 <A, < 1.0 (5)

v

The mean of 81 i is 0.5 and the standard deviation is .2041.

9

b. Sum of Two Variables (S2 A)

This random variable (S2 A) represents the vulnerable area

for the fairly trivial case of an aircraft with only two critical

10




components. Coding of realistic values as mentioned before has been

used. 52,A

is the sum of two random variables, each drawn from identical

symmetric, triangular distributions (0 to 1). The sum (52 A) is defined

over the interval

FZ,A(AV)

F2,A(Av)

FZ,A(AV) -

FZ,A(AV)

The mean of 52

0 to 2. The cumulative is shown below.

2/3(Av)4

2 3
-1/6 + 4/3 Av - 4(AV) £ 16/3(Av)

- 2(a)"*

1 - (-1/6 + 4/3(2-A) - 4(2-A,)
+ 16/3(2-AV)3 . 2(2-Av)4)

=1 -2/3 (2-AV)4

,A

c. Sum of Twelve Variables (S )
12,u

2

is 1 and the standard deviation is .

s 0 <A <172

s ]/ZiAvi].O

s 1 E-Av < 3/2
, 3/2 i.AV <2
2887.

This random variable (S]2 u) represents the vulnerable area

(in coded form) of an aircraft with twelve critical components. Sip.y T8

the sum of twelve random variables each drawn from identical uniform

distributions (0 to 1).

Reference 3 shows some actual cumulative values for S]2 y

be presented in the next section.

The sum is defined over the interval 0 to 12.

which will

Due to their complexity, the equations for this cumulative were not

derived.

The mean of S]2 " is 6 and the standard deviation is 1.

4. Comparison of Non-Normal Mathematically Derived Cumulatives

and Their Normal Approximations

a. Definition of Terms

To aid the reader, the following definitions of terms are

presented.

11




Since tables of the normal cumulative are given for mean O and standard
deviation 1, a transformation is used for all variables to facilitate com-
parisons (random variables in caps, specific values in small case).

1. X is a random variable from a distribution with a mean
of 1 and standard deviation of o. X can be standardized (transformed to
Z) by the following formula:

X - u
(o]

=

Z has mean of 0 and a standard deviation of 1. Specific values

of the random variable X are transformed to specific values of Z via
the same concept.

X-u
(o}

z =
¢(z) will be used to denote the cumulative distribution function

for a normally distributed variable which has been standardized.
F]Z,u(z) will be used similarly to ¢(z) except that it will be

used for non-normal distributions and the subscripts shown refer to

the sum of twelve random variables each from identical, uniform distri-

butions between 0 and 1.

b. S vs Normal

1,4

The probability density functions for the standardized S],A
(from the exact analytic function) and standardized normal random variables
(from a table) are shown in Figure 7 and their cumulatives are shown

in Figure 8. For various z values, cumulative distribution values for

the standardized S and standardized normal, and their differences

1,4
are shown in Table 1. The maximum tabled difference of .0164 occurs at

|z] = 1.0. Because of symmetry, positive z values need not be examined.

12




f(z)

.50

PROBABILITY DENSITY FUNCTIONS
FOR STANDARDIZED S,.. . S,,x AND NORMAL

Spi; - SYMMETRIC TRIANGULAR DISTRIBUTION

SZ’ - SUMMATION OF TWO IDENTICAL SYMMETRIC
8 TRIANGULAR DISTRIBUTIONS

s]2,u - SUMMATION OF 12 IDENTICAL UNIFORM DISTRIBUTIONS

FIGURE 7
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CUMULATIVE DENSITY FUNCTIONS FOR
STANDARDIZED S,.n » Sp.n - NORMAL

1.0

NORMAL , SZ,A’ AND S]Z,u S

N .50
[
Y/
/
Y
Y/
Vs
0
-3 0 +3
Z
Sisa - SYMMETRIC TRIANGULAR DISTRIBUTION ®

Sosn - SUMMATION OF TWO IDENTICAL SYMMETRIC
'TRIANGULAR DISTRIBUTIONS

FIGURE 8




COMPARISON OF S] A AND NORMAL

Standardized Cumulative

Difference

: S fa® SE R
-2.3 .0305 .0019 .0107 -.0088
-2.0 .0918 .0169 .0228 -.0059
-1.8 .1326 .0352 .0359 -.0007
-1.5 .1938 .0751 .0668 +.0083
-1.3 .2346 1101 .0968 +.0133
-1.0 .2959 1751 .1587 +.0164

-.8 .3367 2267 .2119 +.0148
=5 .3979 .3167 .3085 +.0082
-+3 .4388 .3851 .3821 +.0030
0 .5000 .5000 .5000 .0000
For S],A: p = .5, o= .2041
Sy, - 5
21,0 % 208
TABLE 1

The next concept involves transformation of the approximation errors
into the Av dimension.
Table 2 shows the number of standard deviations required to include

a certain percent of the S] A and normal distributions. Thus, for the

15




95 percent interval, use of the normal approximation would only be in
error by (1.960 - 1.902) or .058 times the standard deviation. As the
amount included approaches 100 percent, the normal approximation error
increases. In statistical terminology, use of the normal approximation
to estimate the 1imits which contain a specified percent of the non-normal
distribution is said to be "robust" in that the approximation errors are

small for many distributions which are non-normal (skewed, bi-modal, etc.).

Example:
u(Av) = 100, U(Av) = 10
Distribution 95% Interval
S] p 80.98 - 119.02*
Normal 80.40 - 119.60**
* 100 + 1.902(10)
** 100 + 1.960(10)
S]’A VS NORMAL
Number of Standard Deviations
thepgggiggbﬁzion To Inc;ude Percent in First Column
to be Included 1,4 Normal
80 + 1.354 +1,282
90 + 1.675 + 1.645
95 + 1.902 + 1.960
98 +2.103 + 2.326
99 + 2,205 + 2.576
99.9 + 2.372 + 3.291
TABLE 2

16




& 52,A VS Normal

52,A is the sum of two random variables, each from identical
symmetric triangular distributions. The probability density for the
standardized 52,A can be compared to the standardized normal by
inspection of Figure 7. The cumulative of the standardized SZ,A is so
close to the standardized normal that it cannot be distinguished from
the plotted normal in Figure 8. The values for 52’A are from exact
analytic expressions and the normal values are from tables.

Comparisons for various values of z are presented in Table 3. The
maximum difference in the table (at |z| = 0.8) is .0073. Because of

symmetry, positive z values need not be examined.

17




z SZ,A

-2.5 .2782
-2.3 .3360

0 .4226
-1.8 .4803

5 .5670
.6247
7113

.8556
.9134

3
0
-.8 .7690
5
)
0 1.0000

COMPARISON OF 52

" AND NORMAL

Standardized Cumulative

Fa.2(2) »(z)

Normal

.0040 .0062
.0085 .0107
.0213 .0228
.0355 .0359
.0688 .0688
.1009 .0968
.1653 .1587
.2192 .2119
.3147 .3085
.3861 .3821
.5000 .5000
For SZ,A: u=1.0, 0=
Sp , = 1.0
2,0 = 2887
TABLE 3

18

Difference
Fay 4(2) - o(2)

-.0022
-.0022
-.0015
-.0004
+.0020
+.0041
+.0066
+.0073
+.0062
+.0040

.0000




Table 4 shows the number of standard deviations required to include
a certain percent of the 52'5 and normal distributions. For the 95
percent interval, use of the normal approximation would be in error by
.020 times the standard deviation, which is roughly 1/3 of the error associated

with the normal approximation for S] A"

Example:
u(Av) = 100, o(Av) = 10
Distribution 95% Interval
52 80.60 - 119.40*
A
Normal 80.40 - 119,.60**
* 100 + 1.940(10)
** 100 + 1.960(10)
52 n VS NORMAL
Number of Standard
Deviations to Include the
Percent of the Percent in First Column
Distribution to S
be Included 2,54 Normal
80 + 1,305 + 1,282
90 + 1.651 + 1.645
95 + 1.940 + 1.960
98 + 2.252 + 2.326
99 + 2.444 + 2.576
99.9 + 2.891 + 3.291
TABLE 4

19




d. SlZ,u vs Normal

The cumulative distribution values for the standardized
512’u (obtained from reference 3), the standardized normal and their
differences for various z values are shown in Table 5. The standardized
S]Z,u is so close to the standardized normal that the difference is
not distinguishable in either Figure 7 or Figure 8. The values for
S]Z,u are from exact analytic expressions and the normal values are from
tables.

The maximum tabled error is .0023 (at |z| = 0.8). Because of

symmetry, positive z values need not be examined.

20




COMPARISON OF S]?,u

AND NORMAL

Standardized Cumulative

z 5’_1_2_22 F12,u(z)*
-3.0 3.0 .0010
-2.8 3.2 .0021
-2.6 3.4 .0041
-2.4 3.6 .0075
-2.2 3.8 .0133
-2.0 4.0 .0223
-1.8 4.2 .0358
-1.6 4.4 .0551
-1.4 4.6 .0817
-1.2 4.8 .1166
-1.0 5.0 .1607

-.8 5.2 .2142
-.6 5.4 .2765
-.4 5.6 .3463
-.2 5.8 4217
0 6.0 .5000
For S]Z,u: w =6.0,
212,u ~ 124
*Obtained from reference 3.
TABLE 5
21

Normal

Lolz)
.0013
.0028
.0047
.0082
.0139
.0227
.0359
.0548
.0808
L1151
.1587
2119
.2743
. 3446
.4207
.5000

c=1.0

- 6.0

Difference

-.0003
-.0005
-.0006
-.0007
-.0006
-.0004
-.0001
+.0003
+.0009
+.0015
+.0020
+.0023
+.0022
+.0017
+.0010

.0000




Table 6 shows the number of standard deviations required to include
a given percentage of the S]Z,u and normal distributions. For the
95 percent interval, use of the normal approximation would be in error
by .0089 times the standard deviation, which is less than 1/2 of the error
associated with the normal approximation for SZ,A'

Example:

u(AV) = 100, n(Av) =10

Distribution 95.54% Interval
80.000 - 120.000*
S]Z,u .00 0.000
]
Normal 79.911 - 120.089**

* 100 + 2.0000(10)
** 100 + 2.0089(10)

An inference from these three comparisons is that, as the number of
random variables, P(K/H)'s, increases from 1 to 12, the error caused by
using the normal approximation decreases and the approximation can be
used to include a greater percent of the distribution with a specified

error.

22




512

Percent of the
Distribution to
be Included

76.68

83.66
88.97
92.84
95.54
97.35
98.50
99.80
99.998

*From reference 3.

TABLE 6

5. Extensions of Normal Approximation to Other Non-Normal Distributions

J VS NORMAL

Number of Standard

Ddviations tb Include the
Pércent in First Column

S12,0”
+ 1.2000
+ 1.4000
+1.6000
+ 1,8000
+ 2.0000
+ 2.2000
+ 2.4000
+ 3,0000
+ 4,0000

Normal

1

|+

1

i+ i+ I+ |+ |+ |+
-— e

|+
W NN NN N

==

1912
393V
.5969
.8018
.0089
.2183
.4304
.0882
.3004

Further study of the Central Limit Theorem and its strengths

(reference 2) reveals that:

(1) The distributions of the variables to be summed need not

be symmetric.

(2) The more closely each summand approximates a normal, the

fewer summands needed for the sum to approximate normal.

(3) The distribution of the sum is exactly normal if the

summand distributions are normal.
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The Central Limit Theorem in its most general form also shows that: ‘
(1) Summands need not be identically distributed.
(2) Some relaxation of the independence of the summand distri-
butions is possible.

i S]2,A

S]Z,A is the sum of twelve random variables each drawn
from identical symmetric triangular distributions. The triangular
distribution is closer to the normal than the uniform. Therefore, it
can be concluded that the use of the normal approximation for S]Z,A

has less error than the normal approximation for S]2 U
3

b. Sti 4+ 1,N)
5(1’A + 1,N) is the sum of two random variables, one from
a symmetric triangular and one from a normal distribution. An assumption ‘

must be made for extension of the Central Limit Theorem to this case --
the means of the two distributions are approximately equal and the
standard deviations are approximately equal. If the mean of the
triangular distribution were considerably larger than the normal, the
sum would be very close to that of a triangular distribution (the effect
of the normal portion of the sum would be insignificant).

Thus, it can be concluded for the above assumption that the sum of a
triangular and normal is closer to normal than the sum of two identical
triangular distributions.

C. 512, mixed a,u

512, e T is the sum of twelve random variables each

from either a symmetric triangular or a uniform. Again, each of the
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twelve distributions is assumed to have the same mean and variance.

Since the triangular is closer to normal than uniform, it can be
concluded that 512, mixed a,u is closer to normal than S]Z,u' If
the mix contains one or more normals, then that sum is closer to normal
than the sum which contains only triangular and uniform.

Furthermore, the sum containing only triangular (S]Z,A) will be
closer to normal than the sum containing a mix of triangular and uniform.

d. Non-Symmetric Distributions

Since symmetric distributions are closer to normal than
non-symmetric, sums containing only symmetric distributions approximate
normality with fewer summands than sums containing both symmetric and
non-symmetric (from reference 2).

6. Departure of AV From Assumptions of the Central Limit Theorem

In the foregoing discussions, all of the variables, P'(K/H)i,
were distributed between 0 and 1. For components having uniform and
triangular distributions, equation (7) is a more realistic expression for

Av.

3

Av =
i

~

‘..I[l\i(U_i - Li)P'(K/H)_i + Li] (7)

For distributions other than uniform and triangular, similar
transformations are available but are not presented in this report.
The variable P‘(K/H)i has a coefficient of Ai(ui - Li)‘ If these
coefficients are not equal for all components, the Central Limit Theorem
assumption of identically distributed variables is not met; hence, the

normality approximation may not be as good.
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An extreme example of unequal coefficients (presented areas) is
shown in the following equation which represents a target with 12

critical components.

+ X, + Xyt L.+ X

2 * X3 (7a)

Av = 10,000 X

1 12 °

where the Xi's are uniformly distributed between zero and one.

A Monte Carlo simulation (techniques described in Section III)
was performed and data points from a sample of 1,000 values of Av from
equation (7a) are shown in Figures 9 and 10. Figure 9 shows the negative
z values and Figure 10 shows the positive z values. Figures 9 and 10
also show data points from the simulation of S]Z,u (sample of 1,000),
the exact analytically derived values for the uniform (S],u) and the
normal (table values). S]Z,u is the same variable as shown in equation ‘
(7a) except that all coefficients of S]Z,u equal one. A1l four variables
shown in the graphs are in standardized form (z). Not all of the 2,000
simulated data points are plotted; those points omitted follow the
trends that are shown,

Examination of Figures 9 and 10 shows that A, from equation (7a)
is close to the uniform while the simulation of S]Z,u is close to
the normal. This shows that the shape of A, from equation (7a) is
dominated by the term, 10,000 X]; however, both equations (7a) and S]Z,u
are quite close to normal.

Table 7 1ists specific values of the variables that are plotted

in Figures 9 and 10. .
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CUMULATIVE DISTRIBUTION DATA POINTS FROM SIMULATIONS
OF EQUATION (7a) AND S]2 " FOR COMPARISON TO
ANALYTIC NORMAL AND UNIFORM (NEGATIVE VALUES OF z)

.500
(o]
o=Data Points from
1,000 Simulations of
Av = 10,000 X] + X? + o, ¢+ X]‘,2
X-Data Points from
.400 1,000 Simulations of
Ay =Xy X+ Kt + Xy
.300
Single
F(z) L Uniform
(Exact)
- Normal
(Exact)
200
E
.100
000 5 -2.0 1.6 -1.2 -.8 -.4 0
z
FIGURE 9
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CUMULATIVE DISTRIBUTION DATA POINTS FROM SIMULATIONS
OF EQUATION (7a) AND S]2 i FOR COMPARISON TO
ANALYTIC NORMAL AND UNIFORM (POSITIVE VALUES OF z)

1.000 I‘ 0
I o/'/‘/‘
.900 &
Normal -
Single
= Uniform
.800 |
i O-Data Points from
1,000 Simulations of
A = 10,000 X] # X
+ v Pa
L X=Data Points from
1,000 Simulations of
700 Av = X] + X2 + ...+ X]2
b x
-~
.600 F
=
.500
0 4 .8 1.2 1.6 2.0 2.4
z
FIGURE 10

28

X12




CUMULATIVE VALUES
Mathema?ically Simu]:t$g
Sinulated smgﬁ(’g&ﬁiiﬁom SE'%S’me;* Norma'
z (7a)* 1,u 12,u Tables)

-2.33 .000 .000 .010 .010
-2.20 .000 .000 .015 .014
-2.04 .000 .000 .020 .021
-1.83 .000 .000 .035 .034
-1.73 .000 .000 ns .042
-1.70 .005 .009 .045 .045
-1.48 .065 .073 .070 .069
-1.37 .100 .105 .085 .085
-1.16 .155 .165 .125 .123
- .57 .340 335 .300 .284
- .1 .480 .468 .455 .456
+ .13 .565 .538 .530 .552
+ .50 .650 .644 .680 .692
+ .99 .785 .786 .840 .839
+1.31 .875 .878 .905 .905
+1.52 .930 .939 .940 .936
+1.71 .975 .994 .960 .956
+1.73 rew 1.000 wEs .958
+1.78 1.000 1.000 . .963
+1.84 1.000 1.000 .970 .967
+2.06 1.000 1.000 .980 .980
+2.21 1.000 1.000 .985 .986
+2.39 1.000 1.000 .995 .992
g Av = 10,000 X] + X2 + X3 # e X]Z

o Av =Xt X, t K3t oo+ X0

*** Exact z value did not occur in simulation.

TABLE 7
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Some working rules must be developed to assess the changes in number
of components, the probability density form of P(K/H)i for each component,
the upper and lower limits of P(K/H)i for each component, and the
presented area (Ai) of each component. Some examples of these combinations
are shown below.

Case I. One component's area very large compared to the others.

Set n = 101; all P(K/H)'s symmetric triangularly distributed.

(Uy - L) = Uy - L) = oo = (Uggy = Lygy) = 0.1
- = ® = 2' = 2
A] = A2 =BT R A100 =1 ft ) A]O] = 100 ft
100 )
A, = 151 [(1) (0.1) P'(K/H); + L;J + 1000(0.1) P'(K/H); + Lyoqds or
100 100
A, = [(0.1) 151 P'(K/H);1 + [10 P'(K/H)159] + % Ly +100 Ly, (8)

Part (A) Part (B)
Part (A) of Equation (8) may be considered as normally distributed

with expectation 5.0 and 02

= 100/24. Part (B) of Equation (8) is a
triangular distribution with expectation 5.0 and c2 = 100/24.
Therefore, Case I reverts to the sum of a normal and a triangular, which
is nearer normal than the sum of two triangulars.

Case II. Two components with very large relative areas.

n = 10; all P(K/H)'s are from the same triangular distribution.

(U - Ly) = Uy = Ly) = oou = (Ugg = Lyg) = 0.1
I A 2
Ay = Ay = ... =Ag=1 ftS Ag = Ajy = 100 ft
8
Ay = L L) (0.1) Pr(K/H)LT + 100(.1)P" (K/H)g
Part (A) Part (B)
10

+ 100(.1)P'(K/H);4 + = A.L;
10 i=1 11 (9)

Part (C)
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The sum of Parts (B) and (C) of Equation (9) reverts to the sum of two
identically distributed triangulars, which was previously shown to be
near normal. Part (A) will have a further normalizing efféct, although
this effect is somewhat weakened by the fact that the expected value of
Part (A) is roughly 1/12 of the expected value of either Part (B) or
Part (C).

Other Cases

If all of the (Ui - Li)'s are not equal, then this will disturb the
normality to some degree. For example, if (U] - L]) = IO(U2 - L2), then
this effect will be the same as that for Ay =10 A2‘

Further analysis will be performed using realistic values for P(K/H)i

and Ai to substantiate a set of working rules.

D. Methodology (Av Approximated by Normal)

If Av can be considered normally distributed, the procedure for deter-
mining the limits of Av that contain a specific percent of all Av values
involves the following steps:

(1) Find z from the cumulative normal tables, z vs ¢(z), such that
the specified percent is within *z.

(2) Calculate the mean and standard deviation of Av as shown in
Equations (10) through (17).

(3) Transform +z to Av upper limit and -z to Av lower limit by

the formula

A, - u(A,)
Z= ——Ourv-)-—- or AV - ZU(AV) * u(Av) .




1. Calculation of Mean

Using the algebra of expectations, the expected value of Av

is calculated as follows:

n
U(AV) T E(.E A.IP(K/H).|)

E(A
( v) i=1

ne3

E(Ay P(K/H);)

i=1

1]
™M 3

Ay E(P(K/H),) (10)
i=1

For the uniform distribution,

E(P(K/H)i) = ‘S(Ui + Li) (11)

The general triangular distribution is depicted in Figure 11.

P(K/H)i

FIGURE 11
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The distribution is defined by specifying Mi’ Li’ Ui’ and the
expected value is given by

E(P(K/H)i) = 1/3 (Ui + Li + Mi) - (12)
For a normal distribution,

m
= 3
J=1

X1 from a sample can be used as an estimator of My | §

i Xi3/M

where m is the sample size.

2. Calculation of Standard Deviation

The standard deviation of Av is calculated as follows:

n
[.g

Var (A, P(K/H);)]'/%
i=1

o(Av)

n
L AZ var (P(K/H);)1V/2 - (14)
'I:

The variance of individual components is calculated as follows:

For the normal distribution,
2

Var (P(K/H);) = of ; (15)
m 5 m 2
ml 2 XS] -] T Xis
2 2 2 j=1 " =1 N
S5 from a sample can be used as an estimator of 0fs Sy = (1)
m(m-
where m is the sample size.
For the uniform distribution,
(U'i - L.i)z
Var ((P(K/H){) = ——— - (16)
For the triangular distribution,
- 2 2
Var(P(K/H)i) = ]/18[(M1-Li) + (Mi'Li)(Ui'Mi) + (Ui'Mi) ] (17)
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III. MONTE CARLO SIMULATION DESCRIPTION
The Monte Carlo simulation for the cumulative distribution of Av
was developed and test case answers were checked to verify computer code
structure, under the following conditions:
a. The distribution form of P(K/H)1 can be triangular, uniform,
or normal. Other distribution forms can be added later.
b. Distribution parameters must be specified as follows:

(1) Uniform

—
n

the lower limit of P(K/H)i

(2
n

the upper limit of P(K/H)i

(2) Triangular

(i~ the lower limit of P(K/H)i
U, = the upper Timit of P(K/H)i
M. =

modal (largest frequency) value of P(K/H)i

(3) Normal
Mean (“i) and standard deviation (ai)
c. Presented area (Ai) of each compoﬁent must be specified.
d. The number of sample values of Av desired is specified as K.
The following transformations of variables were performed to assist
in the ease of programming.

a. Uniform

The transformation made for this distribution and the probability

density functions of both variables are shown below.

P(K/H)i = (Ui

34
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L, P(l(/H)_i U, 0 P'(K/H)i 1

FIGURE 12

The cumulative distribution for P'(K/H)i is

1
FrLoP R = [ FP (KM, d(P! (K/H)) (19)

. . 0

This distribution is shown in graphical form in Figure 13.

1.0

FyolP! (K/H),]

P'(K/H)i 1.0

FIGURE 13
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Thus, P'(K/H)i = F] u[P'(K/H)i]’ which means that a uniform random
number [0,1] is drawn, equated to P'(K/H)i, and then transformed
to a value of P(K/H)i.

b. Triangular

P(K/H)i
FIGURE 14
A uniform (0,1) random number is drawn and equated to F[P(K/H)1].
If F[P(K/H);] < (M;-L;)/Us-L; ), then

P(K/H).i - L’i * \/F[P(K/H)i](Mi-Li)(U'{'Li) (20)

If F[P(K/H)i] :_(Mi-Li)/(Ui-Li), then

PR/ = Ug =\ (U3 19) (Ug Ly (1-FIP(K/H), D)

(21)
c. Normal
One method used on computers to approximate the normal is
to sum twelve random numbers each drawn from a uniform [0,1] distri-
bution [No simple explicit means exists to calculate X given ¢(X)].
. 12
Agous 2 R (22)
36
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S J has an expectation of 6 and standard deviation of one; therefore,

12,

(23)

P(K/H)1 = (512,u - 6.0) o5+ uy

which has an expectation of My and standard deviation of SR

The values of Av generated in the simulation are input to a
general statistical program from the NWSC Crane program library. The
output from this program includes the mean, standard deviation, skewness,
kurtosis, frequency histogram, actual values of Av’ actual cumulative
distribution values, theoretical normal cumulative distribution for

each of the observed values of Av, and the maximum deviation between

observed cumulative and theoretical normal cumulative.

IV. MONTE CARLO SIMULATION RESULTS

A comparison of the mathematically derived cumulative distribution
function and the simulated cumulative distribution function is needed
to obtain an estimate of the error that might be present in the simula-
tion of an unknown cumulative distribution function. Simulation results
are shown in Table 8 for a single triangularly distributed variable X,
and in Table 9 for Av = X1 + X2, where X] and X2 are both triangularly
distributed. Also, the maximum errors in using normal approximations
to the mathematically derived cumulative distributions are shown in

these tables.
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Simulation Results for a Single Triangularly Distributed Variable

Maximum Error in
Cumulative Distributions

Number Computer Simulated F

1,0(z) Normal, ¢(z)

of Simulation
Replications Cost vs. Actual F],A(z) vs. Actual F],A(z)
200 $ 2.80 .034 .016
1000 $11.60 .019 .016
TABLE 8

Simulation Results for the Sum of Two Triangularly Distributed
Variables (Av = X.l + XZ)

Simu}aged
F b4
2,8 Normal, ¢(z)
ggmber g?gﬁ%:i?on vs. Actual vs. Actual
Replications Cost FZ,A(Z) F2,A(Z)
200 $ 2.87 .030 .007
1,000 11.79 .021 .007
10,000 320.75 .002 .007
TABLE 9

Table 9 shows that for 200 replications of the simulated Av(SZ,A)’
the maximum observed error in the cumulative was over 4 times that
of the normal approximation. For 1,000 replications, the ratio was
3 to 1, while for 10,000 replications, the simulation error was less
than 1/3 of the normal approximation error (see simulation results).
The simulation error for 10,000 replicates of the vulnerable area

of an aircraft with two critical components is very small; however,

the computer simulation cost of $320 seems prohibitive.
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It can also be noted from observation of Tables 8 and 9 that

the error inherent in the Monte Carlo simulation is sensitive to the

number of replications as well as the number of summands. The error

in the normal approximation, on the other hand, is sensitive only to

the number of summands. As the number of summands increases, the

normal will more closely approximate the actual distribution.

V. CONCLUSIONS

1. Considering the trade-off between accuracy and cost, the normal

approximation is the appropriate technique for calculating the

assurance limits for Av' This approximation should be used to compute

the upper and lower limits such that there is 95% assurance that Av

will be between these limits (95% is used as an example). The steps

that are used to calculate these 1imits are as follows:

Step 1 - Compute XKAV). (NOTE: Symbols X, s are used
since u, o will probably
Step 2 - Compute s(Av). have to be estimated.)

Step 3 - Find z in the table to give desired assurance.

% Assurance
80
90
95
98
99
99.8

Step 4 - Compute Assurance Limits
Upper Limit, XXAV) + zs(Av)
Lower Limit, Y(Av) - zs(Av)

By

z
1.282
1.645
1.960
2.326
2.576
3.090




2. The accuracy of the normal apprdximation will increase as the
number of critical components in the vulnerability analysis increases.
An example of the normal approximation error may be seen by examining
the following table.

Comparison of the exact (mathematically derived) assurance limits
versus the limits assuming normality shows closer agreement as the
number of critical components increases from 1 to 2 to 12 (S],A to

SZ,A to S12’u).

Example
X(A,) = 100 ft%, s(A) = 10 £t2
95% Assurance for Av(ftz)
Distribution Range Limits
S] A +19.02 80.98 - 119.02
SZ,A +19.40 80.60 - 119.40
Normal +19.60 80.40 - 119.60
95.54%* Assurance for A (ftz)
Distribution Range Lifits
S]Z,u +20.000 80.000 - 120.000
Normal +20.089 79.911 - 120.089

* 95% limits were not readily available for 512 u
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3. Logical extensions of statistical theory show that as the
distributions of the P(K/H)'s become more nearly normal, Av will become
more normal, and that if the P(K/H)'s are exactly normal, then Av
is exactly normal. This progression toward normality is shown by
the following ranking (from least normal toward normal);

a. 12 components, all distributions uniform

b. 12 components, mixed uniform and symmetric triangular
distributions

c. 12 components, all distributions symmetric triangular

d. 12 components, mixed symmetric triangular and normal
distributions

Thus, the assurance limits for Av as described by (b), (c), or

(d), above, would be closer to the normal than S12,u as shown in

Conclusion 2.

4. 1In certain vulnerability analyses where one of the critical com-
ponents is many times larger than any of the other critical components,
the accuracy of the normal approximation is decreased but is still
acceptable. For example, fuel tanks are major contributors (large

presented area) in vulnerable area assessments of fixed wing aircraft.

5. There are an infinite number of exceptions to and deviations from

the Central Limit Theorem and its assumptions that could be examined.
The real strength of this normal approximation concept can be better
examined when the presented area and P(K/H) distribution for each

critical components of an actual aircraft are obtained.
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methodology on actual aircraft data, these techniques should be incor-

6. After a successful demonstration of the assurance limits

porated into the VAREA Program. These additions will involve minimal
changes to the existing methodology and a negligible increase of the

execution time.

7. The presented areas and point estimates of P(K/H) for critical
components have received considerable study and should be well documented;
however, availability of these values in published summary form is some-
what limited. The major work thrust that is needed concerns the deter-
mination of the distributions of P(K/H) values.

Specifically, these P(K/H) distributions can be estimated by
analyzing sources of variability such as:

a. Drive shafts shear at different loads and control rods fail at
different compression loads for a fixed amount of the shaft or rod removed.
b. Projectiles on a given shotline (same impact point) would remove ‘
various amounts of the shaft.
c. P(K/H) values for each of several aspect angles are pooled into
one value.
d. Penetration (Thor) equations are not perfect predictors of
residual mass and velocity.
e. Field test data such as the fraction of shots which render a

component non-functional are subject to variability.

8. Continuing efforts will consist of quantifying the variability,
determining some realistic distributions for P(K/H) values and developing

methodology for handling the restrictions placed on distributions by the

shotline survivor rule.
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